Mai 27, 2020 | Kubernetes, Tutorial

Monitoring Kubernetes mit Prometheus

von

Monitoring – für viele eine gewisse Hass-Liebe. Die einen mögen es, die anderen verteufeln es. Ich gehöre zu denen, die es meist eher verteufeln, dann aber meckern, wenn man gewisse Metriken und Informationen nicht einsehen kann. Unabhängig der persönlichen Neigungen zu diesem Thema ist der Konsens aller jedoch sicher: Monitoring ist wichtig und ein Setup ist auch nur so gut wie sein dazugehöriges Monitoring. Wer seine Anwendungen auf Basis von Kubernetes entwickeln und betreiben will, stellt sich zwangsläufig früher oder später die Frage, wie man diese Anwendungen und den Kubernetes Cluster überwachen kann. Eine Variante ist der Einsatz der Monitoringlösung Prometheus; genauer gesagt durch die Verwendung des Kubernetes Prometheus Operators. Eine beispielhafte und funktionale Lösung wird in diesem Blogpost gezeigt.

Kubernetes Operator

Kubernetes Operators sind kurz erklärt Erweiterungen, mit denen sich eigene Ressourcentypen erstellen lassen. Neben den Standard-Kubernetes-Ressourcen wie Pods, DaemonSets, Services usw. kann man mit Hilfe eines Operators auch eigene Ressourcen nutzen. In unserem Beispiel kommen neu hinzu: Prometheus, ServiceMonitor und weitere. Operators sind dann von großem Nutzen, wenn man für seine Anwendung spezielle manuelle Tasks ausführen muss, um sie ordentlich betreiben zu können. Das könnten beispielsweise Datenbank-Schema-Updates bei Versionsupdates sein, spezielle Backupjobs oder das Steuern von Ereignissen in verteilten Systemen. In der Regel laufen Operators – wie gewöhnliche Anwendungen auch – als Container innerhalb des Clusters.

Wie funktioniert es?

Die Grundidee ist, dass mit dem Prometheus Operator ein oder viele Prometheus-Instanzen gestartet werden, die wiederum durch den ServiceMonitor dynamisch konfiguriert werden. Das heißt, es kann an einem gewöhnlichen Kubernetes Service mit einem ServiceMonitor angedockt werden, der wiederum ebenfalls die Endpoints auslesen kann und die zugehörige Prometheus-Instanz entsprechend konfiguriert. Verändern sich der Service respektive die Endpoints, zum Beispiel in der Anzahl oder die Endpoints haben neue IPs, erkennt das der ServiceMonitor und konfiguriert die Prometheus-Instanz jedes Mal neu. Zusätzlich kann über Configmaps auch eine manuelle Konfiguration vorgenommen werden.

Voraussetzungen

Voraussetzung ist ein funktionierendes Kubernetes Cluster. Für das folgende Beispiel verwende ich einen NWS Managed Kubernetes Cluster in der Version 1.16.2.

Installation Prometheus Operator

Zuerst wird der Prometheus-Operator bereitgestellt. Es werden ein Deployment, eine benötigte ClusterRole mit zugehörigem ClusterRoleBinding und einem ServiceAccount definiert. 

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.0
  name: prometheus-operator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus-operator
subjects:
- kind: ServiceAccount
  name: prometheus-operator
  namespace: default
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.0
  name: prometheus-operator
rules:
- apiGroups:
  - apiextensions.k8s.io
  resources:
  - customresourcedefinitions
  verbs:
  - create
- apiGroups:
  - apiextensions.k8s.io
  resourceNames:
  - alertmanagers.monitoring.coreos.com
  - podmonitors.monitoring.coreos.com
  - prometheuses.monitoring.coreos.com
  - prometheusrules.monitoring.coreos.com
  - servicemonitors.monitoring.coreos.com
  - thanosrulers.monitoring.coreos.com
  resources:
  - customresourcedefinitions
  verbs:
  - get
  - update
- apiGroups:
  - monitoring.coreos.com
  resources:
  - alertmanagers
  - alertmanagers/finalizers
  - prometheuses
  - prometheuses/finalizers
  - thanosrulers
  - thanosrulers/finalizers
  - servicemonitors
  - podmonitors
  - prometheusrules
  verbs:
  - '*'
- apiGroups:
  - apps
  resources:
  - statefulsets
  verbs:
  - '*'
- apiGroups:
  - ""
  resources:
  - configmaps
  - secrets
  verbs:
  - '*'
- apiGroups:
  - ""
  resources:
  - pods
  verbs:
  - list
  - delete
- apiGroups:
  - ""
  resources:
  - services
  - services/finalizers
  - endpoints
  verbs:
  - get
  - create
  - update
  - delete
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - namespaces
  verbs:
  - get
  - list
  - watch
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.0
  name: prometheus-operator
  namespace: default
spec:
  replicas: 1
  selector:
    matchLabels:
      app.kubernetes.io/component: controller
      app.kubernetes.io/name: prometheus-operator
  template:
    metadata:
      labels:
        app.kubernetes.io/component: controller
        app.kubernetes.io/name: prometheus-operator
        app.kubernetes.io/version: v0.38.0
    spec:
      containers:
      - args:
        - --kubelet-service=kube-system/kubelet
        - --logtostderr=true
        - --config-reloader-image=jimmidyson/configmap-reload:v0.3.0
        - --prometheus-config-reloader=quay.io/coreos/prometheus-config-reloader:v0.38.0
        image: quay.io/coreos/prometheus-operator:v0.38.0
        name: prometheus-operator
        ports:
        - containerPort: 8080
          name: http
        resources:
          limits:
            cpu: 200m
            memory: 200Mi
          requests:
            cpu: 100m
            memory: 100Mi
        securityContext:
          allowPrivilegeEscalation: false
      nodeSelector:
        beta.kubernetes.io/os: linux
      securityContext:
        runAsNonRoot: true
        runAsUser: 65534
      serviceAccountName: prometheus-operator
---
apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.0
  name: prometheus-operator
  namespace: default
---
apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.0
  name: prometheus-operator
  namespace: default
spec:
  clusterIP: None
  ports:
  - name: http
    port: 8080
    targetPort: http
  selector:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
kubectl apply -f 00-prometheus-operator.yaml
clusterrolebinding.rbac.authorization.k8s.io/prometheus-operator created
clusterrole.rbac.authorization.k8s.io/prometheus-operator created
deployment.apps/prometheus-operator created
serviceaccount/prometheus-operator created
service/prometheus-operator created

Role Based Access Control

Zusätzlich werden entsprechende Role Based Access Control (RBAC) Policies benötigt. Die Prometheus-Instanzen (StatefulSets), gestartet durch den Prometheus-Operator, starten Container unter dem gleichnamigen ServiceAccount „Prometheus“. Dieser Account benötigt lesenden Zugriff auf die Kubernetes API, um später die Informationen über Services und Endpoints auslesen zu können.
Clusterrole 

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
  name: prometheus
rules:
- apiGroups: [""]
  resources:
  - nodes
  - services
  - endpoints
  - pods
  verbs: ["get", "list", "watch"]
- apiGroups: [""]
  resources:
  - configmaps
  verbs: ["get"]
- nonResourceURLs: ["/metrics"]
  verbs: ["get"]
kubectl apply -f 01-clusterrole.yaml
clusterrole.rbac.authorization.k8s.io/prometheus created

 ClusterRoleBinding 

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
- kind: ServiceAccount
  name: prometheus
  namespace: default
kubectl apply -f 01-clusterrolebinding.yaml
clusterrolebinding.rbac.authorization.k8s.io/prometheus created

 ServiceAccount 

apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
kubectl apply -f 01-serviceaccount.yaml
serviceaccount/prometheus created

Monitoring von Kubernetes Cluster Nodes

Es gibt diverse Metriken, die aus einem Kubernetes Cluster ausgelesen werden können. In diesem Beispiel wird zunächst nur auf die Systemwerte der Kubernetes Nodes eingegangen. Für die Überwachung der Kubernetes Cluster Nodes bietet sich die ebenfalls vom Prometheus-Projekt bereitgestellte Software „Node Exporter“ an. Diese liest sämtliche Metriken über CPU, Memory sowie I/O aus und stellt diese Werte unter /metrics zum Abruf bereit. Prometheus selbst „crawlet“ diese Metriken später in regelmäßigen Abständen. Ein DaemonSet steuert, dass jeweils ein Container/Pod auf einem Kubernetes Node gestartet wird. Mit Hilfe des Services werden alle Endpoints unter einer Cluster IP zusammengefasst. 

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
spec:
  selector:
    matchLabels:
      app: node-exporter
  template:
    metadata:
      labels:
        app: node-exporter
      name: node-exporter
    spec:
      hostNetwork: true
      hostPID: true
      containers:
      - image: quay.io/prometheus/node-exporter:v0.18.1
        name: node-exporter
        ports:
        - containerPort: 9100
          hostPort: 9100
          name: scrape
        resources:
          requests:
            memory: 30Mi
            cpu: 100m
          limits:
            memory: 50Mi
            cpu: 200m
        volumeMounts:
        - name: proc
          readOnly:  true
          mountPath: /host/proc
        - name: sys
          readOnly: true
          mountPath: /host/sys
      volumes:
      - name: proc
        hostPath:
          path: /proc
      - name: sys
        hostPath:
          path: /sys
---
apiVersion: v1
kind: Service
metadata:
  labels:
    app: node-exporter
  annotations:
    prometheus.io/scrape: 'true'
  name: node-exporter
spec:
  ports:
  - name: metrics
    port: 9100
    protocol: TCP
  selector:
    app: node-exporter
kubectl apply -f 02-exporters.yaml
daemonset.apps/node-exporter created
service/node-exporter created

Service Monitor

Mit der sogenannten Third Party Ressource „ServiceMonitor“, bereitgestellt durch den Prometheus Operator, ist es möglich, den zuvor gestarteten Service, in unserem Fall node-exporter, für die zukünftige Überwachung aufzunehmen. Die TPR selbst erhält ein Label team: frontend, das wiederum später als Selector für die Prometheus-Instanz genutzt wird. 

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: node-exporter
  labels:
    team: frontend
spec:
  selector:
    matchLabels:
      app: node-exporter
  endpoints:
  - port: metrics
kubectl apply -f 03-service-monitor-node-exporter.yaml
servicemonitor.monitoring.coreos.com/node-exporter created

Prometheus-Instanz

Es wird eine Prometheus-Instanz definiert, die nun alle Services anhand der Labels sammelt und von deren Endpoints die Metriken bezieht. 

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  name: prometheus
spec:
  serviceAccountName: prometheus
  serviceMonitorSelector:
    matchLabels:
      team: frontend
  resources:
    requests:
      memory: 400Mi
  enableAdminAPI: false
kubectl apply -f 04-prometheus-service-monitor-selector.yaml
prometheus.monitoring.coreos.com/prometheus created

Prometheus Service

Die gestartete Prometheus-Instanz wird mit einem Service-Objekt exponiert. Nach einer kurzen Wartezeit ist ein Cloud-Loadbalancer gestartet, der aus dem Internet erreichbar ist und Anfragen zu unserer Prometheus-Instanz durchreicht. 

apiVersion: v1
kind: Service
metadata:
  name: prometheus
spec:
  type: LoadBalancer
  ports:
  - name: web
    port: 9090
    protocol: TCP
    targetPort: web
  selector:
    prometheus: prometheus
kubectl apply -f 05-prometheus-service.yaml
service/prometheus created


kubectl get services
NAME         TYPE           CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
prometheus   LoadBalancer   10.254.146.112    pending      9090:30214/TCP   58s

Sobald die externe IP-Adresse verfügbar ist, kann diese über http://x.x.x.x:9090/targets aufgerufen werden und man sieht alle seine Kubernetes Nodes, deren Metriken ab sofort regelmäßig abgerufen werden. Kommen später weitere Nodes hinzu, so werden diese automatisch mit aufgenommen bzw. wieder entfernt.

Visualisierung mit Grafana

Die gesammelten Metriken, lassen sich leicht und ansprechend mit Grafana visualisieren. Grafana ist ein Analyse-Tool, das diverse Datenbackends unterstützt. 

apiVersion: v1
kind: Service
metadata:
  name: grafana
spec:
#  type: LoadBalancer
  ports:
  - port: 3000
    targetPort: 3000
  selector:
    app: grafana
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: grafana
  name: grafana
spec:
  selector:
    matchLabels:
      app: grafana
  replicas: 1
  revisionHistoryLimit: 2
  template:
    metadata:
      labels:
        app: grafana
    spec:
      containers:
      - image: grafana/grafana:latest
        name: grafana
        imagePullPolicy: Always
        ports:
        - containerPort: 3000
        env:
          - name: GF_AUTH_BASIC_ENABLED
            value: "false"
          - name: GF_AUTH_ANONYMOUS_ENABLED
            value: "true"
          - name: GF_AUTH_ANONYMOUS_ORG_ROLE
            value: Admin
          - name: GF_SERVER_ROOT_URL
            value: /api/v1/namespaces/default/services/grafana/proxy/
kubectl apply -f grafana.yaml
service/grafana created
deployment.apps/grafana created


kubectl proxy
Starting to serve on 127.0.0.1:8001

Sobald die Proxy-Verbindung durch kubectl verfügbar ist, kann die gestartete Grafana-Instanz via http://localhost:8001/api/v1/namespaces/default/services/grafana/proxy/ im Browser aufgerufen werden. Damit die in Prometheus vorliegenden Metriken jetzt auch visuell ansprechend dargestellt werden können, sind nur noch wenige weitere Schritte notwendig. Zuerst wird eine neue Data-Source vom Typ Prometheus angelegt. Dank des kuberneteseigenen und -internen DNS lautet die URL http://prometheus.default.svc:9090. Das Schema ist servicename.namespace.svc. Alternativ kann natürlich auch die Cluster-IP verwendet werden. Für die gesammelten Metriken des node-exporters gibt es bereits ein sehr vollständiges Grafana-Dashboard, das sich über die Import-Funktion importieren lässt. Die ID des Dashboards ist 1860. Nach dem erfolgreichem Import des Dashboards können jetzt die Metriken begutachtet werden.

Monitoring weiterer Anwendungen

Neben diesen eher technischen Statistiken sind auch weitere Metriken der eigenen Anwendungen möglich, beispielsweise HTTP Requests, SQL Queries, Business-Logik und vieles mehr. Hier werden einem durch das sehr flexible Datenformat kaum Grenzen gesetzt. Um seine eigenen Metriken zu sammeln, gibt es wie immer mehrere Lösungsansätze. Einer davon ist, seine Anwendung mit einem /metrics Endpunkt auszustatten. Manche Frameworks wie z.B. Ruby on Rails haben bereits brauchbare Erweiterungen. Ein weiterer Ansatz sind sogenannte Sidecars. Ein Sidecar ist ein zusätzlicher Container, der neben dem eigentlichen Anwendungscontainer mitläuft. Beide zusammen ergeben einen Pod, der sich Namespace, Netzwerk etc. teilt. In dem Sidecar läuft dann Code, der die Anwendung prüft und die Ergebnisse als parsebare Werte für Prometheus zur Verfügung stellt. Im Wesentlichen können beide Ansätze, wie im oben gezeigten Beispiel, mit dem Prometheus Operator verknüpft werden.

Erhalte den nächsten Artikel

Mehr Artikel in Kubernetes | Tutorial
Ingress-NGINX mit Cert-Manager absichern

Ingress-NGINX mit Cert-Manager absichern

In einem der ersten Tutorials auf unserer Seite haben wir dir gezeigt, wie du Ingress-NGINX in deinem Cluster installieren und einrichten kannst. Heute gehen wir einen Schritt weiter und schauen uns an, wie du Ingress-NGINX und deine Services mit Hilfe von...

Migration von Servern auf VMware zu OpenStack

Migration von Servern auf VMware zu OpenStack

In diesem Tutorial befassen wir uns mit der Migration von Servern auf VMware zu OpenStack. Nach der kürzlichen Übernahme VMwares durch Broadcom haben in den vergangenen Wochen viele kleinere Cloud Service Provider (CSPs) Mitteilung zur Kündigung ihrer Mitgliedschaft...

Meistere Kubernetes mit Cilium: Traffic Filterung auf L7 Basis

Meistere Kubernetes mit Cilium: Traffic Filterung auf L7 Basis

Mit der neuen Version des Cilium CNI auf unserem Kubernetes-Service erhältst Du die Möglichkeit, den Datenverkehr anhand von L7-Eigenschaften zu filtern. Das ist normalerweise Service-Meshes vorbehalten und kann bei der Sicherheit deiner Dienste sehr hilfreich sein....

Terraform und OpenStack

Terraform und OpenStack

Viele von Euch sind vermutlich bereits mit der Verwendung von Terraform in Kombination mit Azure oder AWS vertraut. Und obwohl dies die am häufigsten verwendeten Plattformen sind, gibt es - oftmals im Bezug auf Datenschutz (DSGVO) - Unwägbarkeiten und somit weiterhin...

Dynamic Inventory – Eine Ansible und OpenStack Lovestory

Dynamic Inventory – Eine Ansible und OpenStack Lovestory

Für diejenigen unter euch, die mit Ansible möglicherweise nicht allzu vertraut sind: Es ist ein großartiges Tool, um in die Welt der Automatisierung einzusteigen und erleichtert euer Leben im Konfigurationsmanagement erheblich.   Die Kennenlernphase In diesem Tutorial...

ReadWriteMany (RWX) mit dem NFS Ganesha Provisioner

ReadWriteMany (RWX) mit dem NFS Ganesha Provisioner

Einführung Du hast die Anforderung, dass Deine Anwendung für eine Lastverteilung über mehrere Nodes skalieren muss, aber Zugriff auf ein gemeines PVC benötigt? Zu diesem Zweck benötigst Du ein PVC welches RWX-fähig ist. Im Rahmen unserer Managed Kubernetes Cluster ist...

Persistente Volumes in Kubernetes vergrößern

Persistente Volumes in Kubernetes vergrößern

Du willst ein PersistentVolume (PV) in Kubernetes vergrößern? In diesem Blogeintrag erfährst du wie das funktioniert. Was PVs sind und wie man diese anlegt wird im Tutorial Persistente Volumes in Kubernetes erstellen erklärt, auf welchem das vorliegende Tutorial...

Wie Du Deine NETWAYS Managed Database startest

Wie Du Deine NETWAYS Managed Database startest

Im ersten Tutorial hat Sebastian bereits erklärt, was es mit Vitess auf sich hat und welche Möglichkeiten es Dir beim Betrieb Deiner Anwendung, im Vergleich zu einer gewöhnlichen Datenbank, bietet. Im folgenden Text möchte ich nun darauf eingehen, wie Du Dir in...

Was ist Vitess?

Was ist Vitess?

Im Jahr 2010 wurde eine Lösung entwickelt, um die massiven Skalierbarkeitsprobleme von MySQL bei YouTube zu lösen - und somit war Vitess geboren. Später - im Jahr 2018 - wurde das Projekt Teil der Cloud Native Computing Foundation und ist seit 2019 als eines der...